COM3000 MULTICAST

Alcatel-Lucent OMNISWITCHES

TECHNICAL SPECIFICATIONS
Table of Contents

1 SCOPE ... 4
 1.1 PURPOSE .. 4
 1.2 APPLICABILITY ... 4
 1.3 REFERENCE DOCUMENTS .. 4
 Project Reference Documents .. 4
2 IP MULTICAST .. 5
3 IP MULTICAST SWITCHING .. 6
 3.1 IP MULTICAST SWITCHING .. 6
 3.2 RAPID SPANNING-TREE PROTOCOL (RSTP) ... 8
 3.3 RESILIENCY AND REDUNDANCY ... 8
4 ALCATEL-LUCENT ENTERPRISE OMNISWITCHES 8
 4.1 1G/10G ETHERNET SWITCH (OS6860) ... 8
 Multicast support: ... 9
 4.2 1G/10G ETHERNET SWITCH (OS6560) ... 10
 Multicast Support: .. 11
 4.3 1G/10G ETHERNET SWITCH (OS6450) ... 12
 Multicast support: .. 12
 4.4 1G ETHERNET SWITCH (OS6350) .. 13
 Multicast support: .. 14
5 MULTICAST SWITCH CONFIGURATION ... 15
 5.1 SAMPLE SWITCH CONFIGURATION ... 15
AOS 8.x.x ... 15
AOS 6.x.x ... 17
5.2 AOS 6.x.x SWITCH CONFIGURATION (OS6450/OS6350) .. 18
 Vlan (AOS 6.x.x) .. 18
 vlan port default (AOS 6.x.x) ... 18
 ip interface (AOS 6.x.x) .. 18
 ip multicast status (AOS 6.x.x) ... 19
 ip multicast version (AOS 6.x.x) .. 19
 ip multicast querying (AOS 6.x.x) .. 19
 ip multicast querier-forwarding (AOS 6.x.x) ... 19

5.3 AOS 8.x.x SWITCH CONFIGURATION (OS6860/OS6560) .. 20
 Vlan (AOS 8.x.x) .. 20
 vlan members untagged (AOS 8.x.x) .. 20
 vlan members tagged (AOS 8.x.x) ... 20
 ip interface (AOS 8.x.x) .. 20
 ip multicast admin-state (AOS 8.x.x) ... 21
 ip multicast querying (AOS 8.x.x) .. 21
 ip multicast querier-forwarding (AOS 8.x.x) ... 21
 ip multicast zapping (AOS 8.x.x) .. 21
 ip multicast flood-unknown (AOS 8.x.x) ... 22

6 COM3000 CHASSIS IP SWITCH SETTINGS ... 22

6.1 COM400 PORT DEFINITION ... 22

6.2 ACCESSING THE COM400 USER INTERFACE .. 23

6.3 SETTING A PASSWORD .. 24

6.4 COM3000 IGMP ACTIVATION ... 24

6.5 CHANGING THE CHASSIS MANAGEMENT IP ADDRESS AND ADDING VLAN 26

6.6 SAVE CHANGES TO RUNNING CONFIGURATION .. 29
1 SCOPE

1.1 PURPOSE

The information contained in this document represents the features of the listed Alcatel-Lucent Products.

Alcatel-Lucent makes no claims regarding the accuracy of this published information and specifically disclaims all liability for loss or damages of any kind resulting from discussions made or actions taken by any party based on this information.

Product information contained in this document is subject to change and frequent updates without prior notice.

This document also provides an overview of the features and functionalities of the Alcatel-Lucent Omniswitch regarding the multicast Integration to COM3000.

1.2 APPLICABILITY

This document is applicable for guidelines on Omniswitch configuration and COM3000 configuration for multicast functionality.

1.3 REFERENCE DOCUMENTS

The latest versions of the reference documents listed below and available on Alcatel-Lucent Business Partner Website except where a specific revision number of a reference document is indicated.

Project Reference Documents

a) OmniSwitch AOS Release 6CLI Reference Guide
b) OmniSwitch AOS Release 8CLI Reference Guide
c) OmniSwitch AOS Release 8 Network Configuration Guide
d) OmniSwitch AOS Release 6 Network Configuration Guide
e) COM3000 Integrators Manual 3-1
2 IP MULTICAST

IP multicast is a technique for one-to-many communication over an IP network. The destination nodes send Internet Group Management Protocol join and leave messages, for example in the case of IPTV when the user changes from one TV channel to another. IP multicast scales to a larger receiver population by not requiring prior knowledge of who or how many receivers there are. Multicast uses network infrastructure efficiently by requiring the source to send a packet only once, even if it needs to be delivered to a large number of receivers. The nodes in the network take care of replicating the packet to reach multiple receivers only when necessary.

IP multicast is a method of sending Internet Protocol (IP) datagrams to a group of interested receivers in a single transmission. It is the IP-specific form of multicast and is used for streaming media and other network applications. It uses specially reserved multicast address blocks in IPv4 and IPv6.

Protocols associated with IP multicast include Internet Group Management Protocol, Protocol Independent Multicast and Multicast VLAN Registration. IGMP snooping is used to manage IP multicast traffic on layer-2 networks.

![Multicast Diagram](image)

What is the difference between Unicast, Broadcast and Multicast messages? Broadcast messages are sent to all stations in the network. Whereas an unicast message is only sent to one station on the network. ... IPv4 addresses from 224.0.0.0 to 239.255.255.255 are MULTICAST IP addresses.
3 IP MULTICAST SWITCHING

3.1 IP MULTICAST SWITCHING

In a networking environment where IP multicast traffic is used, destination hosts signal their intent to receive a specific IP multicast stream by sending an Internet Group Management Protocol (IGMP) request to a nearby switch. This process is referred to as IGMP Snooping. The switch then learns on which ports multicast group subscribers are attached and can intelligently deliver traffic only to the respective ports.

The OmniSwitch implementation of IGMP Snooping is called IP Multicast Switching (IPMS).
This example shows that a COM3000 can be configured with a unique IP address and a IP multicast address.

IP Multicast Switching is a one-to-many communication technique employed by emerging applications, such as video distribution, news feeds, conferencing, netcasting, and resource discovery (OSPF, RIP2). Unlike unicast, which sends one packet per destination, multicast sends one packet to all devices in any subnetwork that has at least one device requesting the multicast traffic. Multicast switching also requires much less bandwidth than unicast techniques and broadcast techniques, since the source hosts only send one data stream to the ports on which destination hosts that request it are attached.

Destination hosts signal their intent to receive a specific IP multicast stream by sending a request to do so to a nearby switch by using Internet Group Management Protocol (IGMP). This is referred to as IGMP Snooping. Destination hosts signal their intent to receive a specific IPv6 multicast stream by sending a request to do so to a nearby switch by using Multicast Listener Discovery (MLD) protocol. This is referred to as MLD Snooping. The switch then learns on which ports multicast group subscribers are attached and can intelligently deliver traffic only to the respective ports. The OmniSwitch implementation of IGMP Snooping is called IP Multicast Switching (IPMS) and MLD snooping is called IP Multicast Switching version 6 (IPMSv6). IPMS/IPMSv6 allows switches to efficiently deliver multicast traffic in hardware at wire speed.
3.2 **RAPID SPANNING-TREE PROTOCOL (RSTP)**

Non-Stacked switches are connected in a ring configuration. Rapid spanning-tree is used as a loop prevention mechanism to determine which way traffic flows through the Multicast network.

3.3 **RESILIENCY AND REDUNDANCY**

The ALE Omniswitches are designed to be resilient and fault tolerant in that any Fiber Optic or copper cable failure along the Multicast network allows traffic to flow in the opposite direction through the re-convergence of the Rapid Spanning-tree Protocol process.

The Omniswitch connectivity to two separate 10G connection to the COM3000. This is done using a multi-switch LAG. This means that there are two separate fiber optic or copper cables connecting the single omniswitch or stacked omniswitches to COM3000. This provides added bandwidth as well as a fiber/copper and switch fault tolerance.

4 **ALCATEL-LUCENT ENTERPRISE OMNISWITCHES**

4.1 **1G/10G ETHERNET SWITCH (OS6860)**

The Alcatel-Lucent OmniSwitch® 6860 Stackable LAN Switches (SLS) are compact, high-density Gigabit Ethernet (GigE), Multigigabit and 10 GigE platforms designed for the most demanding converged networks.
The OmniSwitch 6860 supports the following resiliency features:

- Virtual chassis that provides management functionality and automatic election of primary and secondary managers
- Redundant backup power supplies
- Fault tolerant loop stacking
- Hot swappable chassis, power supplies, SFPs
- Image rollback to automatically re-load previous configurations and software versions
- Hitless loading of optional advanced routing software without re-booting

Multicast support:

- Internet Group Management Protocol (IGMP) v1/v2/v3 snooping
- Protocol Independent Multicast – Sparse- Mode (PIM-SM), Source Specific Multicast (PIM-SSM)
- Protocol Independent Multicast – Dense- Mode (PIMDM), Bidirectional Protocol Independent Multicast (PIM-BiDir)
- Distance Vector Multicast Routing Protocol (DVMRP)
- Multicast Listener Discovery (MLD) v1/v2 snooping
- PIM to DVMRP gateway support
4.2 1G/10G Ethernet Switch (OS6560)

The Alcatel-Lucent OmniSwitch™ 6560 Stackable Gigabit and Multi-Gigabit Ethernet LAN value switch family is an industry leading campus access solution for enterprise networks. With multi-gigabit ports for high-speed IEEE 802.11ac devices, 10 GigE uplinks and 20 GigE stacking, the OmniSwitch 6560 is the right solution for your next generation network.

Offering a design optimized for flexibility and scalability as well as low power consumption, the OmniSwitch 6560 is an outstanding edge solution. It uses the field-proven Alcatel-Lucent Operating System (AOS) to deliver highly available, secure, self-protective, easily managed and eco-friendly networks.

The Alcatel-Lucent OmniSwitch 6560 family is embedded with the latest technology innovations, and offers maximum investment protection.
Multicast Support:

- IGMPv1/v2/v3 snooping to optimize multicast traffic
- Multicast Listener Discovery (MLD) v1/v2 snooping+
- Up to 1000 multicast groups
- IP Multicast VLAN (IPMVLAN) for optimized multicast replication at the edge, saving network core resources

OmniSwitch 6560 Gigabit models

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS6560-24X4</td>
<td>Gigabit fixed chassis in 1RU size. Includes 24 RJ-45 10/100/1G BaseT, 2xSFP(1G) and 4xSFP+ (1G/10G) uplink/stacking ports, Internal AC supply, power cord, user guides, and 19” rack mount hardware.</td>
</tr>
<tr>
<td>OS6560-P24X4</td>
<td>Gigabit fixed chassis in 1RU size. Includes 24 RJ-45 10/100/1G BaseT PoE+, 2xSFP(1G) and 4xSFP+ (1G/10G) uplink/stacking ports, 600W AC supply, power cord, user guides, and 19” rack mount hardware.</td>
</tr>
<tr>
<td>OS6560-48X4</td>
<td>Gigabit fixed chassis in 1RU size. Includes 48 RJ-45 10/100/1G BaseT, 2xSFP(1G) and 4xSFP+ (1G/10G) uplink/stacking ports, Internal AC supply, power cord, user guides, and 19” rack mount hardware.</td>
</tr>
<tr>
<td>OS6560-P48X4</td>
<td>Gigabit fixed chassis in 1RU size. Includes 48 RJ-45 10/100/1G BaseT PoE+, 2xSFP(1G) and 4xSFP+ (1G/10G) uplink/stacking ports, 920W AC supply, power cord, user guides, and 19” rack mount hardware.</td>
</tr>
</tbody>
</table>
4.3 **1G/10G Ethernet Switch (OS6450)**

The Alcatel-Lucent OmniSwitch® 6450 Stackable Fast Ethernet and Gigabit Ethernet LAN value switch family offers versatile, 24/48-port fixed configuration switches with 10 GigE uplinks and provides upgrade paths for 10 Gigabit Ethernet (GigE) stacking, 10 GigE uplinks and metro Ethernet services.

Promoting a design optimized for flexibility, scalability, and low power consumption, the OmniSwitch 6450 is an outstanding edge solution. It uses the field-proven Alcatel-Lucent Operating System (AOS) to deliver highly available, secure, self-protective, easily managed and ecofriendly networks.

The OmniSwitch 6450 family is embedded with the latest technology innovations and offers maximum investment protection.

Multicast support:

- IGMPv1/v2/v3 snooping for optimized multicast traffic
- Multicast Listener Discovery (MLD) v1/v2 snooping
- Up to 1000 multicast groups per stack
- IP Multicast VLAN (IPMVLAN) for optimized multicast replication at the edge, saving network core resources
4.4 1G ETHERNET SWITCH (OS6350)

The Alcatel-Lucent OmniSwitch® 6350 Stackable family is a series of fixed-configuration Gigabit Ethernet switches available as 10-, 24- and 48- port, Power-over-Ethernet (PoE) and non-PoE models to create the exact network for your business.

The network capabilities of the OmniSwitch 6350 family include advanced security, quality of service and high availability features for your business-class data, voice and wireless technologies. These switches are simple to deploy, configure and manage.
Multicast support:

- IGMPv1/v2/v3 snooping for optimized multicast traffic
- Multicast Listener Discovery (MLD) v1/v2 snooping
- Up to 1000 multicast groups
- IP Multicast VLAN (IPM VLAN) supported

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>056350-10</td>
<td>Gigabit Ethernet standalone chassis in a 1U by 1/2 rack form factor with 8 10/100/1000 Base-T ports, 2 Gigabit RJ45/SFP ports.</td>
</tr>
<tr>
<td>056350-P10</td>
<td>Gigabit Ethernet standalone chassis in a 1U by 1/2 rack form factor with 8 10/100/1000 Base-T ports, 2 Gigabit RJ45/SFP ports.</td>
</tr>
<tr>
<td>056350-24</td>
<td>Gigabit Ethernet stackable chassis in a 1RU form factor with 24 10/100/1000 Base-T ports, 2 Gigabit SFP ports and 2 SFP uplink/stacking ports</td>
</tr>
<tr>
<td>056350-P24</td>
<td>Gigabit Ethernet stackable chassis in a 1RU form factor with 24 10/100/1000 PoE Base-T ports, 2 Gigabit SFP ports and 2 SFP uplink/stacking ports</td>
</tr>
<tr>
<td>056350-48</td>
<td>Gigabit Ethernet stackable chassis in a 1RU form factor with 48 10/100/1000 Base-T ports, 2 Gigabit SFP ports and 2 SFP uplink/stacking ports</td>
</tr>
<tr>
<td>056350-P48</td>
<td>Gigabit Ethernet stackable chassis in a 1RU form factor with 48 10/100/1000 PoE Base-T ports, 2 Gigabit SFP ports and 2 SFP uplink/stacking ports</td>
</tr>
</tbody>
</table>
5 MULTICAST SWITCH CONFIGURATION

5.1 SAMPLE SWITCH CONFIGURATION

AOS 8.x.x.

**

system name COM3K-Test
system location " "
system timezone EST
system daylight savings time disable

vlan 1 disable name "VLAN 1"

<table>
<thead>
<tr>
<th>Document</th>
<th>ALE 0001</th>
<th>Revision</th>
<th>01.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Created by</td>
<td>A Intal (Reviewed by B Witt)</td>
<td>Ext. Revision</td>
<td></td>
</tr>
<tr>
<td>File Name</td>
<td>OMNISWITCH and COM3000 – Multicast Integration</td>
<td>Page 15 of 29</td>
<td></td>
</tr>
</tbody>
</table>
vlan 2 enable name "COM3000"
vlan 2 members ports 1/1/1-24 untagged

ip service all
ip interface "Management" address 192.168.3.2 mask 255.255.255.0 vlan 2 ifindex 1

ip multicast status enable
ip multicast querying enable
ip multicast version 3
ip multicast robustness 5
ip multicast zapping enable
ip multicast querier-forwarding enable
ip multicast vlan 2 querier-forwarding enable

aaa authentication default "local"
aaa authentication console "local"
aaa authentication telnet "local"
aaa authentication ftp "local"
aaa authentication http "local"
aaa authentication snmp "local"

session prompt default "COM3K> "
ip static-route 0.0.0.0/0 gateway 192.168.3.1 metric 1
health threshold temperature 78
bridge mode 1x1

session prompt default "COM3K> "
ip helper dhcp-snooping vlan 2
ip helper dhcp-snooping binding enable
ip helper dhcp-snooping port 1/1 trust

swlog console level info
**
AOS 6.x.x

**
system name COM3K-Test
system location " "
system timezone EST
system daylight savings time disable

vlan 1 disable name "VLAN 1"
vlan 2 enable name "COM3000"
vlan 2 port default 1/1-24

ip service all
ip interface "Management" address 192.168.3.2 mask 255.255.255.0 vlan 2 ifindex 1

ip multicast status enable
ip multicast querying enable
ip multicast version 3
ip multicast robustness 5
ip multicast zapping enable
ip multicast querier-forwarding enable
ip multicast vlan 2 querier-forwarding enable

aaa authentication default "local"
aaa authentication console "local"
aaa authentication telnet "local"
aaa authentication ftp "local"
aaa authentication http "local"
aaa authentication snmp "local"

session prompt default "COM3K> "
ip static-route 0.0.0.0/0 gateway 192.168.3.1 metric 1
health threshold temperature 78
bridge mode 1x1
session prompt default "COM3K> "
ip helper dhcp-snooping vlan 2
ip helper dhcp-snooping binding enable
ip helper dhcp-snooping port 1/1 trust

swlog console level info

Note: this is minimum configuration for multicast and that a comprehensive configuration
would address additional items (management and defending the network (snmp, syslog, ntp,
management user rights, disabling unused management protocols & learned port security,
loopback detection, bpdu guard,...).

5.2 AOS 6.x.x SWITCH CONFIGURATION (OS6450/OS6350)

Vlan (AOS 6.x.x)
Creates a new VLAN with the specified VLAN ID (VID) and an optional description.

```
vlan vid [enable | disable] [name description]
```

```
no vlan vid
```

Vlan port default (AOS 6.x.x)
Configures a new default VLAN for a single port or an aggregate of ports. The VLAN specified with
this command is referred to as the configured default VLAN for the port.

```
vlan vid port default {slot/port | link_agg_num} vlan vid
```

```
no port default {slot/port | link_agg_num}
```

ip interface (AOS 6.x.x)
Configures an IP interface to enable IP routing on a VLAN. Without an IP interface, traffic is bridged
within the VLAN or across connections to the same VLAN on other switches.
ip interface name [address ip_address] [mask subnet_mask] [admin [enable | disable]] [vlan vid] [forward | no forward] [local-proxy-arp | no local-proxy-arp] [eth2 | snap] [primary | no primary] local-host-dbcast [enable | disable]

no ip interface name

ip multicast status (AOS 6.x.x)

Enables or disables IP Multicast Switching and Routing on the specified VLAN, or on the system if no VLAN is specified.

ip multicast [vlan vid] status [{enable | disable}]

ip multicast version (AOS 6.x.x)

Sets the default version of the IGMP protocol on the specified VLAN or on the system if no VLAN is specified.

ip multicast [vlan vid] version [version]

ip multicast querying (AOS 6.x.x)

Enables or disables IGMP querying on the specified VLAN or on the system if no VLAN is specified.

ip multicast [vlan vid] querying [{enable | disable}]

no ip multicast [vlan vid] querying

ip multicast querier-forwarding (AOS 6.x.x)

Enables or disables IGMP querier forwarding on the specified VLAN or on the system if no VLAN is specified.

ip multicast [vlan vid] querier-forwarding [{enable | disable}]

no ip multicast [vlan vid] querier-forwarding
5.3 AOS 8.x.x SWITCH CONFIGURATION (OS6860/OS6560)

Vlan (AOS 8.x.x)

Creates a new VLAN with the specified VLAN ID (VID) and an optional description.

```
vlan vlan_id [admin-state {enable | disable}] [name description]
```

```
no vlan vlan_id
```

Vlan members untagged (AOS 8.x.x)

Configures a new default VLAN for a single port or an aggregate of ports. The VLAN specified with this command is referred to as the configured default VLAN for the port.

```
vlan vlan_id[-vlan_id] members {port chassis/slot/port[-port1] | linkagg agg_id[-agg_id]} untagged
```

```
no vlan vlan_id[-vlan_id] members {port chassis/slot/port[-port1] | linkagg agg_id[-agg_id]}
```

Vlan members tagged (AOS 8.x.x)

Configures a port or link aggregate ID to send and receive 802.1q-tagged packets with the specified VLAN ID.

```
vlan vlan_id[-vlan_id] members {port chassis/slot/port[-port] | linkagg agg_id[-agg_id]} tagged
```

```
no vlan vlan_id[-vlan_id] members {port chassis/slot/port[-port] | linkagg agg_id[-agg_id]}
```

Ip interface (AOS 8.x.x)

Configures an IP interface to enable IP routing on a VLAN or allow remote access. Without an IP interface, traffic is bridged within the VLAN or across connections to the same VLAN on other switches.
ip interface {if_name / emp | master emp | local chassis-id chassis} [{address | vip-address} ip_address] [mask subnet_mask] [admin-state [enable | disable]] [vlan vlan_id | service service_id] [forward | no forward] [local-proxy-arp | no local-proxy-arp] [e2 | snap] [primary | no primary]

no ip interface if_name

ip multicast admin-state (AOS 8.x.x)

Enables or disables IP Multicast Switching and Routing on the specified VLAN, Shortest Path Bridging (SPB) service, or on the system if no VLAN or SPB service is specified.

ip multicast [vlan vlan_id[-vlan_id2] | service service_id[-service_id2]] admin-state [enable | disable]

no ip multicast [vlan vlan_id[-vlan_id2] | service service_id[-service_id2]] admin-state

ip multicast querying (AOS 8.x.x)

Enables or disables IGMP querying on the specified VLAN or on the system if no VLAN is specified.

ip multicast [vlan vlan_id[-vlan_id2]] querying {enable | disable} [static-source-ip ip_address]

no ip multicast [vlan vlan_id[-vlan_id2]] querying [static-source-ip]

ip multicast querier-forwarding (AOS 8.x.x)

Enables or disables IGMP querier forwarding on the specified VLAN, Shortest Path Bridging (SPB) service, or on the system if no VLAN or SPB service is specified.

ip multicast [vlan vlan_id[-vlan_id2] | service service_id[-service_id2]] querier-forwarding [enable | disable]

no ip multicast [vlan vlan_id[-vlan_id2] | service service_id[-service_id2]] querier-forwarding

ip multicast zapping (AOS 8.x.x)

Enables or disables IGMP zapping on the specified VLAN, Shortest Path Bridging (SPB) service, or on the system if no VLAN or SPB service is specified.
ip multicast [vlan vlan_id[-vlan_id2] | service service_id] zapping [{enable | disable}]

no ip multicast [vlan vlan_id[-vlan_id2] | service service_id[-service_id2]] zapping

ip multicast flood-unknown (AOS 8.x.x)

Enables or disables the flooding unknown multicast traffic for the specified VLAN, Shortest Path Bridging (SPB) service, or on the system if no VLAN or SPB service is specified. When a traffic flow is first seen on a port, there is a brief period of time where traffic may get dropped before the forwarding information is calculated. When flooding unknown multicast traffic is enabled, no packets are dropped before the forwarding information is available.

ip multicast [vlan vlan_id[-vlan_id2] | service service_id[-service_id2]] flood-unknown [enable | disable]

no ip multicast [vlan vlan_id[-vlan_id2] | service service_id[-service_id2]] flood-unknown

6 COM3000 CHASSIS IP SWITCH SETTINGS

6.1 COM400 PORT DEFINITION

When you first log into the COM400 the landing page will display the graphic shown below. Ports 1-11 are utilized in the COM400 chassis and a displayed as lit with a connection to each port is made.

Refer to the table below for port definitions.

Port State Overview
In this example all ports are connected except #7, the top QAM port.

<table>
<thead>
<tr>
<th>Port #</th>
<th>COM400 Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COM51 slot 6</td>
</tr>
<tr>
<td>2</td>
<td>COM51 slot 5</td>
</tr>
<tr>
<td>3</td>
<td>COM51 slot 4</td>
</tr>
<tr>
<td>4</td>
<td>COM51 slot 3</td>
</tr>
<tr>
<td>5</td>
<td>COM51 slot 2</td>
</tr>
<tr>
<td>6</td>
<td>COM51 slot 1</td>
</tr>
<tr>
<td>7</td>
<td>QAM Port 2 (TOP)</td>
</tr>
<tr>
<td>8</td>
<td>QAM Port 1 (Bottom)</td>
</tr>
<tr>
<td>9</td>
<td>Unmanaged switch to both 1 GIG ports</td>
</tr>
<tr>
<td>10</td>
<td>Top 10 GIG</td>
</tr>
<tr>
<td>11</td>
<td>Bottom 10 GIG</td>
</tr>
</tbody>
</table>

Note: Since both 1 gigabit ports are connected to the same port on the layer 2 switch via an unmanaged switch all multicast traffic requested by one port will be present on the other. For this reason, it is recommended that the 1 gigabit ports not be used for multicast traffic.

6.2 Accessing the COM400 User Interface

➢ To determine the IP address of the COM400 user interface use the following formula:
 o 192.168.10. (chassis id +1)
 o For most one chassis configuration this would equate to 192.168.10.2
 o Login is Admin, leave Password field blank
6.3 **SETTING A PASSWORD**

To set a password navigate to >Configuration>Security>Password

![System Password]

6.4 **COM3000 IGMP ACTIVATION**

IGMP Snooping is enabled by default, to access IGMP Snooping Configuration navigate to: Configuration>IPMC>IGMP Snooping>Basic Configuration as shown below Be sure Unregistered IPMCv4 Flooding in not enabled.
Verify **Snooping Enabled** is checked. If not check the box and then click **Save**

Fast leave settings may depend on the IP tuner being used. If you are testing or otherwise have a STB connected directly to the COM400 enable fast leave on all ports by checking the top box Port *

<table>
<thead>
<tr>
<th>Port</th>
<th>Router Port</th>
<th>Fast Leave</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disable Unregistered IPMCv4 Flooding enabled (default)

Enable unregistered IPMCv4 traffic flooding.
The flooding control takes effect only when IGMP Snooping is enabled.
When IGMP Snooping is disabled, unregistered IPMCv4 traffic flooding is always active in spite of this setting.
Fast Leave off (default)
Fast leave settings may depend on the IP tuner being used. If you are testing or otherwise have a STB connected directly to the COM400 enable fast leave on all ports by checking the top box Port

6.5 CHANGING THE CHASSIS MANAGEMENT IP ADDRESS AND ADDING VLAN
Management IP address should only be changed when it is necessary at manage the entire system from a different subnet. The COM51 cards IP address will need to be changed to the same subnet as the chassis. Change the COM51 card IP address and add an alternate IP address for the QAM before proceeding.

To change the IP address used to access the COM400 chassis navigate to:

Configuration->System->IP

Click on Add Interface

Set the following:
VLAN = 2
Fallback =1
IP address = new management IP address (for this example we will use 10.0.0.251)
Mask Length = 16
Click Enable
Click on Save
Then navigate to:
Configuration->VLANs->Configuration

In order to access the chassis and the associated COM cards and QAM from the same port all connected ports will need to be set to the same VLAN.
Set Allowed Access VLANs to 2
Refer to the chart on page 1 to identify the ports being used
Set each port to be used on VLAN2 to the following settings:
Mode = Hybrid
Port VLAN = 2

Once the port is changed you will no longer be able to access the COM400 on the default IP address. It is recommended to leave one port on VLAN1 so the chassis can be accessed with the default IP.

In the example below both one gigabit ports (port9) and the top 10 gigabit port (port 10) will use the new VLAN IP assignment. Connecting directly to the bottom 10 gigabit port (port 11) will allow connection with the default IP address.

Ports 5, 6, and 8 have been set to the new VLAN settings. This sets COM51 cards in slot one and two and the QAM to VLAN2.
To verify the change has taken effect connect your PC to a 1 gigabit port, or the top 10 gigabit port. Change the IP settings in your PC’s ethernet connection to the correct subnet to access the new IP address.

![Internet Protocol Version 4 (TCP/IPv4) Properties](image)

Enter the new IP address into the browser and verify you connect to the COM400 and the COM51 cards.
Change your IP setting back to match the default 192.168.3.XX, subnet 255.255.0.0. Connect to the bottom 10 gigabit port and verify you can access the COM400 at the default 192.168.10.2 address.

If you run into problems, reboot the COM400 chassis and all configurations will return to default.

6.6 **SAVE CHANGES TO RUNNING CONFIGURATION**

Once you have verified the changes you have made are correct save the changes to running config so they become persistent and do not revert to default after a power cycle.

Navigate to:
Maintenance > Configuration > Save as startup-config
Click **Save Configuration**

Save Running Configuration to startup-config

Please note: The generation of the configuration file may be time consuming, depending on the amount of non-default configuration.

Click **Save Configuration**